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Connected and Automated Vehicles

- Levels of Automation

— The SAE International definitions for levels of automation divide vehicles into levels based on “who does what, when.”

— Fully automated, autonomous, or “self-driving” vehicles are defined as “those in which operation of the vehicle occurs without
direct driver input to control the steering, acceleration, and braking and are designed so that the driver is not expected to constantly
monitor the roadway while operating in self-driving mode.”

The 5 levels of driving automation

(TN The human driver does all the driving.

[ ]
For on-road vehicles \~8 Human driver Automated system
\oQ Human drive
Steeringand  Monitoring Fallback when Automated
. . . ; B . B . acceleration/ ofdriving  automation  systemisin
Level 1 An advanced driver assistance system (ADAS) on the vehicle can assist the human driver with either sizering or T ey fails e
brakingfaccelerating. ® ®
Q NO N N N/A
AUTOMATION
R \
An ADAS on the vehicle can control both steering and braking/acceleraiing under some circumstances. The human g 9
Level 2 driver must continue to pay full attention (“maonitor the driving environment™) at all times and perform the rest of the ~§ % DRIVER D???\?IAEG
driving task. g g ASSISTANCE ot
o
An automated driving system (ADS) on the vehicle can perform all aspects of the driving task under some PARTIAL D??cl)thAIEG
Level 3 circumstances The human driver must be ready o take back control at any time the ADS reguesis the human AHOMATION MODES
driver to do so.In all other circumstances, the human driver performs the driving task.
CONDITIONAL Di?\;‘:'ﬁg
g AUTOMATION NODES
. . - . - . - - . =
Level 4 An ADS on the vehicle can itself perform all driving tasks and moniter the driving environment — essentially, do all %E
the driving — in certain circumstances. The human need not pay attention in those circumstances. ®s HicH SOME
£ ﬁ o AUTOMATION DRIVING
3K MODES
O B
LIS )
An ADS on the vehicle can do all the driving in all circumstances. The human occupants are just passengers and £ E FULL
Level 5 . o g
need never be involved in driving. = AUTOMATION
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Connected and Automated Vehicles

» Connected Vehicles

— Connected vehicles are vehicles that use any of a number of different communication technologies to communicate
with the driver, other cars on the road (V2V), roadside infrastructure (V2I), and the “Cloud” (V2C).

— This technology can be used to not only improve vehicle safety, but also to improve vehicle efficiency and commute

times.
V2X Communications Protocol For Self-Driving Cars

@ > LIPS . voricieTovenice Vehicle to Vehicle to Vehicle to Vehicle to Vehicle to
- ﬁ Infrastructure Vehicle Cloud Fedestrian Everything
T — Y R Y D e

e Source: http://autocaat.org/Technologies/Automated and Connected \ehicles/

R
V2P v
Vehicle-To-Pedestrian
V2X can be implemented / \
using IEEE 802.11p or \
C-vax /‘/ -
Itis compatible with a A8 )
self-driving car's
ADAS \ i A
va2c
Vehicle-To-Cloud
vai \/
Vehicle-To-Infrastructure

Source: https://medium.com/self-driving-cars/improving-self-driving-car-safety-and-
reliability-with-v2x-protocols-1408082bae54

Source: https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
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Connected and Automated Electric Vehicles

Connected

Automated Electric

Convergence of the Electric Propulsion Systems
and Automated Vehicles:

EVs have inherent advantages when it comes to fuel
savings and reducing the impact on the environment.

It is easier for computers to drive electric vehicles.

The lower operating cost of a battery-electric vehicle is
a much bigger factor.
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SERVCO HYUNDAI Partnership

Major automakers’ partnerships related to mobility,

connectivity and driving automation
Source: https://www.cargroup.org/wp-content/uploads/2018/07/Impact-of-ACES.pdf
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A variety of intelligent transportation system on highway, arterial and urban roads enabled by connected and automated vehicles
« Communication with other vehicles enables (1) augmented awareness, (2) platooning, and (3) cooperative maneuvers.

(4): Communication with the infrastructure enables enhanced approach and departure to signalized intersections. Cloud connectivity enables access to
databases, forecasts, and remote computations. On-board perception, localization and maps are fundamental to navigate in known and unknown environments.

(5): Roadway sensors generate signal phase and timing (SPaT) and vehicle occupancy and speed (VOS) data, that can be stored in the cloud.

(6): Other applications include coordination of grid charging, parking, road works

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and automated vehicles: State of the art and future challenges.” Annual Reviews in Control (2018).
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Overview of Energy Management for Connected Automated EVs

Connected Vehicles Automated
(V2V, V2I, V2C, V2X, etc.) Driving Systems
N AN /

Sustainable Transportation
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Outline
« Qverview of Connected and Automated Electric VVehicles
 Electric Vehicle Energy Consumption Modeling

+ Energy Efficiency Driving Technologies
— Eco-Driving

— Eco-Routing

» Automatic Charging Decision Making for Connected and Automated Electric Vehicles
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Electric Vehicle Energy Consumption Model and Prediction
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Sources:
Zonggen Yi, Peter H. Bauer. "Energy Consumption Model and Charging Station Placement for Electric Vehicles." Smartgreens. 2014.
Zonggen Yi, Peter H. Bauer. "Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis." IET Electrical Systems in Transportation 7.1 (2016): 3-13.
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Physical Based Methods for Energy Consumption Modeling

Pbat hbat hconv hcontr hm hmp
Batt Power w=a» Motor == Electric == Mechanical
allely k= converter ®== Controller €== Motor == Powertrain
4
P, | l
Avel’age 'ﬁ_ ‘ ----- . wheel .
e Parasitic Propulsion Regenerative
P Braking Wheels
Power

Air drag power \

P(0)=3 rCA((0) - O Y0

e Mass: M

Power Consumed at Wheels Rolling resistance power « Frontal area: 4
— D . ,  Drag coefficient: C,4
Pueet(t) = Pair(0) + Prou(®) + Priu(t) + Fac(®) | p )= 00 X yngoostamy |+ i density: p
Power Consumed at Battery Acceleration power *  Wind speed: w(t)

1 1 ~ » Rolling resistance: f.-(t)
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Data Driven Methods for Energy Consumption Modeling

Data-driven methods utilize machine learning models, and historical and real-time data that are collected from multiple
resources to create the energy consumption models.

The data may include the time-series data, such as, elevation, speed, acceleration and power consumption, and also include
other static map and vehicle specification data, e.g. distance, trip run time, temperature, weight of loads, tire pressure,

frontal area. Multivariate Adaptive Regression Spline Approach
Hybrid Machine Learning Model |

Data preparation | | Model Implementation ‘ l Model Application |

SOM Reference Vectors .
Mij = (mjp, myja, . .. M) !

Knowledge

Base

Static Data @ @ |
. : .’ I
' Trip Feature Vectors ! A I
' (Training Set) ! Range Estimation |
[ M| Xk= (ks %ok XNK) gk 1 and :
Vi . i Recommendations 2
' ' 1
Vi | I ' ) | i
V .
V k —l """""""""""""""""""""""""""""""""""""""" Power I
k New Trip Vectors (Testers) Consumption |
Tk = (k. ket zgior &e .. Prediction |
|
|
|

Eco-routing decisions

Source: B. Zheng, P. He, L. Zhao, and H. Li, “A hybrid machine learning model for range

estimation of electric vehicles,” in Proc. Global Commun. Conf., Washington, DC, USA, Dec.
2016, pp. 1-6.

Source: Yuche Chen, et al. "Data-driven fuel consumption estimation: A
multivariate adaptive regression spline approach." Transportation Research
Part C: Emerging Technologies 83 (2017): 134-145.
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Challenges of EV Energy Consumption Prediction
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Challenges of EV Energy Consumption Prediction
* [llustrations from Real World Historical Data
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EV Energy Consumption Modeling Using Combined Method

automated electric vehicles: A personal usage scenario.” Transportation Research Part C: Emerging
Technologies 86 (2018): 37-58.

: : ctribh it » A stochastic model for Nissan Leaf
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EV Energy Consumption Modeling Using Combined Method

* Multiple Channels Prediction Model and Real-time Update

New Completed Trip
* Distance d|k]|
* Travel Time t[k]
* Energy Cost E,[ k]

|

Average Speed

Vk]
Energy Cost per Mile
Eepm [k]

Multi-Channel Updating

my[k] = fn(mylk — 1], Eepm[k]) future routes

Average speeds in

[V"': Zl B
| ] = ol — 1, B[y ety (] ], my k)
o e (621K, 63k . 6311l
- : : L ‘Prediction Function Fitting
v i Vi mylk] = fin(mylk — 1], Eepm[Kk]) Mean Prediction Function Fy,;, (V)
[V, Vi Sxlk] = fs(8x[k — 11, Egpmlk]) Variance Prediction Function F,, (V)
L 4

Robust Decision - Reconstructed lower and
upper bound of uncertainties

Making

E Predicted variance of energy
. cost per mile &3

Deterministic ' . Predicted mean of energy

Decision Making

- cost per mile m,

Requirement for promising EV energy consumption modeling

v Combined Physical based data-driven modeling can provide a robust and feasible modeling approach.

v" Stochastic modeling can provide the capability of modeling real-world uncertainties.

v Real-time updating is necessary to handle the dynamics of real world traffic and other environmental conditions.
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Opportunities of Connected EVs for Energy Consumption Prediction
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Outline
« Qverview of Connected and Automated Electric VVehicles
» Electric Vehicle Energy Consumption Modeling

* Energy Efficiency Driving Technologies
— Eco-Driving

— Eco-Routing

- Automatic Charging Decision Making for Connected and Automated Electric Vehicles
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Control and Optimization Architecture for Connected and Automated Vehicles

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and automated vehicles: State of the art and future challenges.” Annual Reviews in Control (2018).
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Eco-Driving Technologies in CAEVs

- Eco-Driving refers to the computation of a minimum-energy vehicle trajectory along a certain route.

- Eco-Driving exploits route information and long-term forecasts (such as road grade and traffic congestion) and
accounts for constraints such as trip time and maximum velocity; vehicle stops and intersections are also considered on
urban and arterial roads.

— Energy efficient: EVs convert about 59%-62% of the electrical energy from the grid to power at the wheels. Conventional
gasoline vehicles only convert about 17%—-21% of the energy stored in gasoline to power at the wheels. (source:
https://www.fueleconomy.gov/feg/evtech.shtml#end-notes)

— Electric vehicles can have very different ranges under different vehicle speeds

— Energy consumption is sensitive to environmental conditions

Range vs. Constant Speed
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Eco-Driving Technologies in CAEVs

- Optimal Speed Profile Design (Reference Cruising Velocity Generation)
— Objective: Optimal Speed Profile v(s) with regard to location
— Position-Based Energy Consumption Model
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Eco-Driving Technologies in CAEVs
Optimal Speed Profile Design

‘Minimum Energy Cost with L Minimum Time Cost with
Time Cost Constraint(MECTC) Energy Cost Constraint(MTCEC)
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Eco-Driving Technologies in CAEVs

« Eco Approaching and Departure
— Minimize travel time, reduce acceleration peaks, avoid idling at red lights, or directly minimize energy consumption

«  Methodologies Speed
— Heuristic Algorithms
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Illustration of different vehicle trajectories traveling across an intersection

Source: Xuewei Qi, Matthew J. Barth, Guoyuan Wu, Kanok Boriboonsomsin, and Peng Wang. "Energy impact of
connected eco-driving on electric vehicles." In Road Vehicle Automation 4, pp. 97-111. Springer, Cham, 2018.
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Eco-Routing Technologies for CAEVs

Eco-Routing aims to find a route that requires the least amount
of fuel and/or produces the least amount of emissions for
traditional vehicles.

For electric vehicles with zero emission, Eco-Routing
corresponds to finding the route with the minimum battery
energy consumption.

Eco-Routing in electric vehicles has special features:

The energy cost of a route segment can be negative due to
regenerative braking, which can occur in two different ways: (a)
downhill driving in a 3D route profile and (b) deceleration.

The recuperation of the kinetic and potential energy depends on
the route choice as well as the characteristics of the power
sources i.e. their capacity and powertrain efficiency

Methodologies

Dijkstra-like algorithms: R. Abousleiman et al., 2014
A* algorithms: Y. Wang et al., 2013; A. Cela et al., 2014

Optimization based techniques: M. W. Fontana, 2013; O.
Arslan et al., 2015, Zonggen Yi et al., 2018
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consumption model." arXiv preprint arXiv:1801.08602 (2018).)
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Eco-Routing Technologies for CAEVs

« Optimization Based Methods

min E el-jx,;j
xij

Ajj€Ae
1
S.t. z Xij — z Xji = —1
JiAjjEA, J:Aji€Ae 0 otherwise
xij € {0,1},V Al] € Ae
(A5, €55)
(4. €,)

Aysr€ys)
(A4s:€45)

(Ayy€5
S 0 (Agy,€54)

(Ay5,€5)

(Ags,€55)

ifiisS
if iisD

(457, €57)

(g7 €57)

37.92 %
A shortest route
* El Cerrito n
e * eco-route Are:
R
37.91 5 Kensington
Ins|
Point'Isabel
"0 ??Igglosr?ale Tilden Pa
éﬁ 37.9 Shoreline Merry Go Rour
i Indian
[0} Albany,
4= Mudflats State Rock Park
= Marine Park
< 37.89 NG Berkele
- Albany M Rose Gar
Golden Gate Fields O (1)
37.88 w77 Chez Panisse
i NORTH
NORTHWEST == BERKELEY
BERKELEY 8 b
Mclaughlin e DErkeley
37.87 Eastshore universit
State Park Ao |
-122.34 -122.32 -122.3 -122.28 -122.26

longitude [deg]
A comparison between the minimum distance route and the minimum energy
route, for an origin and a destination in the Berkeley area: The minimum distance
route is 9.72km long, and requires 4.23kWh according to a simple model of plug-in
hybrid electric vehicle. The minimum energy route is 10.03km long, and requires
3.22kWh according to the same model.

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and
automated vehicles: State of the art and future challenges." Annual Reviews in Control (2018).



Optimal Stochastic Eco-Routing Solutions
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Challenges of Energy Efficiency Technologies in CAEVs

Challenges of Eco-Driving

In optimal control formulations, traffic speed is easily included as an upper bound on the vehicle speed;
however, its uncertainty is generally neglected, with effects that have not been investigated thus far.

Stop signs can also be included as state constraints in optimal control formulations; since they enforce a full
vehicle stop, this approach essentially generates a multi-phase problem.

A stochastic optimization formulation for intersections with actuated signals should be considered. If the
assumption of free flow on the road link is removed, forecasts of the traffic state (vehicle occupancy and speed,
queue length) are required.

In electric and hybrid powertrains, avoiding vehicle stops may not always be the best policy: the combination of
regenerative braking and engine on/off may affect significantly the optimal strategy.
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Challenges of Energy Efficiency Technologies in CAEVs

Challenges of Eco-Routing
Common pitfalls are model accuracy and uncertainty. The application of eco-routing to CAEVs seems promising
in this regard: the on-board controls, removing to some extent the human driver from the loop, lead to more
consistent energy consumption.

A direction that has been little investigated is the use of systematic methods to handle uncertainty in models and
forecasts. VVehicle connectivity creates more accurate and broad environment sensing and more comprehensive
energy cost estimations.

The effect of eco-routing (and routing algorithms in general) at the network level (rather than at the vehicle level
only) is not well understood yet.
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Outline
« Qverview of Connected and Automated Electric VVehicles
» Electric Vehicle Energy Consumption Modeling

+ Energy Efficiency Driving Technologies
— Eco-Driving
— Eco-Routing

« Automatic Charging Decision Making for Connected and Automated Electric

Vehicles



Idaho National Laboratory

Integrated Energy Management of Connected Automated Electric
Vehicles

« Overview of integrated energy management for CAEVs

Energy Consumption
Eco-driving/Eco-routing

Energy Management
of Automated EVs

Energy Recharging
Charging Decision Making

Sources:

« Zonggen Yi, and Matthew Shirk. "Data-driven optimal charging decision making for connected and automated electric vehicles: A personal
usage scenario.” Transportation Research Part C: Emerging Technologies 86 (2018): 37-58.

» Zonggen Yi, John Smart, and Matthew Shirk. "Energy impact evaluation for eco-routing and charging of autonomous electric vehicle fleet:
Ambient temperature consideration.” Transportation Research Part C: Emerging Technologies 89 (2018): 344-363.
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Opportunities from Automated Electric Vehicles
Connected Automated EVs

i ! : . .. : Connected Charging Station
e Automatic Charging Decision Making Network

An automatic decision making process is
necessary for charging of automated
electric vehicles

Remove the challenge of co-locating «
charging infrastructure with driver
destinations

Automatic Charging Station

Utilize real-time charging station status . ® e

information S

4

Benefits
» Ensure sufficient battery energy to meet travel needs

Photo Source: Photo Source:
- i https://patents.google.com/pat ... . . .
e Ipealehiog ComaDISIOB!  entiuseszzaos T+ Minimize the energy/time/money cost of charging actions

coming-to-electric-

vehicles/id=58756/  Facilitate the charging control and vehicle/grid integration



A Framework for Automatic Charging Decision Making

Travel/ltinerary Information
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Dynamic Programming for Charging Decision Making
«  Multi-Stage Charging Decision Making Modeling

Deterministic (Average) Modeling
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Eco-Routing and Charging Decision Making for Automated EV Fleet

+  Optimization Model for Simultaneously Routing and Charging Decision Making

Idaho National Laboratory
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Objective

« Select the route with minimum energy cost and
simultaneously charge vehicles automatically to satisfy the
battery energy requirement in an autonomous EV fleet
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Eco-Routing and Charging Decision Making for Automated EV Fleet
* Valuable Findings
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Vehicle Level Challenges for Integrated Energy Management of CAEVs

* Energy Consumption Dynamics - Charging Power Dynamics
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Vehicle Level Challenges for Integrated Energy Management of CAEVs

- Impact of High Power Charging to Battery Life
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A rendering of a 350kW XFC charging station by Electrek. Percent change in energy capacity from baseline
Source: https://www.energy.gov/eere/vehicles/downloads/enabling-extreme-fast- Source: https://www.energy.gov/sites/prod/files/2015/01/f19/dcfc_study fs 50k.pdf

charging-technology-gap-assessment
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System Level Challenges for Integrated Energy Management of CAEVs

Spatiotemporal travel demand

Centralized vs Decentralized
 Communication cost
« Computing cost

Eco-Routing/Eco-
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» Different charging power levels
« Dynamic utilization pattern
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Summary

An introduction to connected and automated electric vehicles has been provided. Future intelligent transportation and

energy management applications are summarized and illustrated.

Modeling technologies of electric vehicle energy consumption are introduced, i.e. physical based and data driven

methods. Some opportunities from vehicle automation and communication are identified.

Two types of trip level energy efficiency driving technologies, i.e. eco-driving and eco-routing, are introduced. Specific

research questions and scenarios are illustrated, and their potential methods and challenges are summarized.

Automatic charging decision making for CAEVs are introduced to investigate the possibility of integrated energy
management for future CAEV transportation systems. Challenges from both vehicle and transportation system levels

are identified for promising future research.



